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Estimating the Total Number of Protein Folds

Sridhar Govindarajan,! Ruben Recabarren,! and Richard A. Goldstein®2*
1Department of Chemistry, University of Michigan, Ann Arbor, Michigan
2Biophysics Research Division, University of Michigan, Ann Arbor, Michigan

ABSTRACT Many seemingly unrelated protein
families share common folds. Theoretical models
based on structure designability have suggested
that a few folds should be very common while many
others have low probability. In agreement with the
predictions of these models, we show that the distri-
bution of observed protein families over different
folds can be modeled with a highly-stretched expo-
nential. Our results suggest that there are approxi-
mately 4,000 possible folds, some so unlikely that only
approximately 2,000 folds existing among naturally-
occurring proteins. Due to the large number of ex-
tremely rare folds, constructing a comprehensive data-
base of all existent folds would be difficult. Constructing
a database of the most-likely folds representing the
vast majority of protein families would be considerably
easier. Proteins 1999;35:408-414. © 1999 Wiley-L.iss, Inc.
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INTRODUCTION

It has been repeatedly noted that certain folds are
greatly over-represented in biological databases. We would
expect that proteins of the same protein family that share
a clear evolutionary relationship would be structurally
similar. But there are numerous examples of seemingly
unrelated protein families also sharing the same fold.

Two classes of explanations have arisen that can explain
this observation. The most obvious explanation is that
there are a limited number of possible protein folds.1?2
Certain folds are thus seen repeatedly because there are
few other options. In contrast, a number of investigators
have explained this observation by considering “structure
designability.” According to this second view, it is much
easier to find viable sequences that form into some folds
than others. The over-representation of these most-
designable folds would be expected. For instance, Govin-
darajan and Goldstein used analytical and computational
models to consider which folds could be most optimized for
protein folding, and related the optimal foldability with
the number of sequences that would be able to generate
that fold.3>* Similar results were obtained using lattice
models by a number of investigators who counted the
number of sequences that would form into various non-
degenerate ground-states.>” All of these studies found
that there was a broad distribution in the number of
sequences that could form into different folds.
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We can distinguish between these two different classes
of models by considering how the protein families of known
structure are distributed among the various folds. If the
over-representation of certain folds is due to the small
number of possible folds, we would expect to be able to
model the observed distribution with the assumption that
a small number of folds were possible and roughly equally-
likely. In contrast, the designability approaches predict
that there should be many rare folds and a few extremely
common folds. This again should be detectable in the
observed distribution.

The distinction between these two classes of models
have consequences for both protein design and protein
structure prediction. We are gaining growing abilities to
fashion amino acid sequences that form into pre-decided
protein structures. If certain folds were over-represented
because they were more designable, then these would
make attractive targets for such protein engineering at-
tempts. If all folds were equally likely, then the choice of an
appropriate target structure can be made based on other
criterion. While ab initio protein structure predictions are
still currently beyond the limit of feasibility, limited suc-
cess has been obtained with a simpler problem—recogniz-
ing when a given target protein will form into a fold that
has been observed previously. This method must fail when
the target protein has a novel fold. It is obviously of
interest to understand the relative probability of a match
with a previously observed fold, both now and in the
future. Such protein-structure prediction methods would
be most widely applicable if we had a database of all
possible protein folds. How possible would it be to as-
semble such a database? Distinguishing between these
two models can also help us to refine our questions
regarding basic principles of protein structure. If only a
few folds are possible, why is this? What properties
characterize “impossible” protein structures? Alterna-
tively, if many protein folds are possible but with varying
degrees of likelihood, what determines why nature chooses
some folds more often than others? Does this reflect
structural or functional constraints, or does it have to do
with the nature of biomolecular evolution?
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Two additional questions arise: How many different
folds are possible? How many should we expect to find in
nature? A number of investigators have tried to estimate
the total number of existent folds, both observed and
currently unobserved.?8-13 The estimated number, based
on different databases and different sets of assumptions,
range from 400 to 8,000. As discussed below, many of the
assumptions used in these analyses can be rejected based
on the observed data.

The problem of estimating an underlying statistical
distribution from a random sample drawn from that
distribution has a long history in statistics, and is often
referred to as the “species problem.”14-18 Given a random
sampling of a number of organisms of different types, what
is the best estimate of the total number and distribution of
organisms, both observed and unobserved? Two standard
approaches have been developed. In the parametric ap-
proach, a functional form is assumed for the underlying
distribution, and the form is adjusted to match the ob-
served random sample. In the non-parametric approach,
statistical properties of the observed samples are used to
estimate various characteristics of the underlying distribu-
tion directly. While the non-parametric approach involves
fewer assumptions, lack of numerical stability often makes
the results of less use.

In this paper, we follow the parametric approach and
develop a model for the distribution of protein families
among the various folds based on a stretched exponential.
This allows us to model the relative abundance of rare and
common fold types with only two adjustable parameters—
the total number of folds, and the “stretchiness” of the
exponential. We use a maximum-likelihood analysis to
model the overall distribution of sampled structures given
the underlying distribution, and compare with the ob-
served distribution of folds as classified by Murzin and
co-workers.1® The fit to the observed data is approximately
equal to what we would expect if the model were correct. In
contrast, we find that the models used by other investiga-
tors are in variance with the observed distribution and can
be statistically rejected. We find that the optimal distribu-
tion is extremely stretched, as predicted by the computa-
tional and analytical models, with a total number of
possible folds of approximately 4,000. According to this
model, some folds will be common and thus over-repre-
sented among observed protein structures. Conversely,
many folds will be highly unlikely, so that the total number
of folds found in nature would be about 2,000. These
results give strong support to the models that focus on
protein designability, and suggest that forming a compre-
hensive database of all existent folds will be difficult.
Conversely, because of the extreme range of representa-
tion of different folds, a more limited set of folds will be
adequate for describing the vast majority of protein fami-
lies.

METHODS
The Model

In this paper, we use the standard parametric approach
to estimate the underlying distribution of protein families

among the various folds. (See, for example, Efron and
Thisted®). We imagine that there is an ensemble of N
possible folds {S;}, with 1 = i = N. The probability that any
particular protein family will form into fold S; is given by
\i. If all folds are equally likely, then \; would be equal to
1/N for all i. In general, we can consider that some folds are
more common than others, so that there is a distribution of
I\i} values for all of the different folds. Rather than to try to
model the discrete values of (\;}, we convert this set of
values to a continuous distribution characterized by the
function p(\;) (0 = \; = 1) which describes the probability
of any fold having a particular value of \;. The distribution
is normalized, so that p(\;) satisfies

S o0nan, = 1. (1)

Similarly, since all proteins form one of the N possible
folds, the average value of \; must be equal to 1/N, or

I oo = N, )

We are interested in finding an acceptable form for p(\;)
that matches the distribution of observed protein struc-
tures among the various possible folds. Specifically, there
are various protein folds that are observed different num-
bers of times. The observed experimental data is in the
form of a set of values (W}, where , is the total number of
folds that are observed among exactly | different protein
families. po represents the number of protein folds that
have not yet been observed. L = 2~ ol = N — o is the total
number of folds that have been observed at least once. M =
2\, is the total number of protein families of known
structure.

For any given functional form for p(\;), we are interested
in varying the adjustable parameters to best fit the
observed values of {]. As an example, for the stretched
exponential represented in Eq. (6), we would like to find
the optimal values of N and B. (Once these values are
determined, C and « can be calculated using the normaliza-
tion conditions expressed in Eq. (1) and (2).) We use the
maximum-likelihood approach, and seek to maximize A,
the log of the probability that a set of [y} values would
result with M observations given a particular p(\;) distribu-
tion.

For our observed sample of M protein families of known
structure, the probability P, (1) that exactly I out of the M
protein families will form a specific fold with a given value
of \; (so that M — | proteins do not form into this fold) is
given by

M
PuD= ( | )’\!(1 = MM ®)

As we do not know the value of \; for any particular fold, we
integrate over the distribution of \; values to calculate the
total probability P(l) of any particular fold representing |
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out of the M native folds

M
P() = ( | ) J pounia - nyr-ian, @

Consider an ordered list of the N possible folds, with the
first Y, folds each unobserved, the next p; folds observed
once, etc. Approximating these as independent events, the
probability of such a situation can be written as the
product of all of the corresponding P(l') for each of the folds,
equal to I~ P(I). We then need to multiply this product
by the number of the ways of ordering the N folds
consistent with the observed set of [} values. The probabil-
ity P (|y)) of observing a set of structures described by [y} is
then

N! z
Plu)) = - TPy (5)
N > P(l)H
=0 M

Note that the products over values of | includes | = 0, the
folds that are not observed. The log-likelihood function A is
then equal to the log of P ({u(1)}).

We attempt to model the data with expressions for p(\;)
that have been preposed and used previously, including a
delta-function representing the assumption that all folds
are equally-likely,? a normal distribution,® and a simple
exponential.’?2 Based on the previously-mentioned design-
ability models, we also use a truncated stretched exponen-
tial of the form

Cexp(—aNf) | 0<)\ <1

) =
PN 0 | otherwise

6

(when B =1, p(\;) is a common exponential). For each
value of 8 and N, we use an iterative numerical algorithm
to calculate the values of C and « so that equations 1 and 2
are satisfied. We then calculate the log-likelihood by
taking the log of P(|w}), as computed in Eq. (5). The values
of B and N that maximize A are found through a standard
quadratic interpolation scheme, using a Numerical Algo-
rithms Group (NAG) algorithm.?°

We must next examine how well the various models fit
the data. What log-likelihood value would we expect if the
models were correct? Which models can be rejected based
on their log-likelihood values? One approach for address-
ing these types of questions is with parametric bootstrap
sampling.?! In brief, each proposed model is optimized to
fit the observed data. For each of these optimized model,
1,000 synthetic datasets are constructed. The correspond-
ing model is then re-optimized for each of these synthetic
datasets, and the maximum log-likelihood values com-
puted. We can then compare the log-likelihood value
obtained with the observed data with the distribution of
log-likelihood values obtained with the synthetic data

where we know (by construction) that the model is perfect.
We can also use the bootstrap procedure to estimate
confidence intervals: the relative range of the parameters
obtained through analysis of the synthetic data sets pro-
vides an estimate of the relative range of those parameters
given the observed data. Furthermore, the ability of the
likelihood-maximization method to extract the correct
values of the parameters used to generate the synthetic
datasets provides independent confirmation of the assump-
tions used in the analysis, such as the assumption of the
independence of the values of | for the different structures.

Once a model is created with a optimized form of p(\;),
(W), the expected number of folds that would be found in |
different protein families out of a database of M protein
families, is given by

() = NP(I) @)

where P(l) is given by Eq (4). The expected number of
observed folds, (L) is equal to

L)=N - = Z I(). ®)

The probability that a fold with a given value of \; is not
represented among the M protein families of known struc-
tureis (1 — \;)M. This fold would be found, on average, in \;
of all protein families. We would expect to find Np(\;) folds
with this value of \;. Integrating the product of these terms
over all values of \; gives us the fraction of all protein
families with folds that have not yet been observed. f, the
fraction of all protein families with folds that have been
previously observed, is then one minus this quantity:

f= 1N [N@ = 0)Vpdn. ©

The Data

A number of investigators have compiled classification
systems of protein structures, with somewhat different
criterion for deciding whether two proteins have the same
fold.111922 For such pattern-recognition problems it is
difficult to find computational approaches that can com-
pare with human judgement. For this reason, we favor the
methods with the maximum of expert human intervention
and use the most recent SCOP classification (release 1.37)
of Murzin and co-workers.1® According to the SCOP classi-
fication, proteins are considered in the same family if they
have evident homology detectable based on comparison of
their sequences. As described above, proteins from the
same family would be expected to share the same fold. We
therefore gather statistics of how many protein families
form each particular fold. We define two protein families to
have the same fold if and only if they are assigned the
same fold in the SCOP database. For this study, we omit
the proteins classified as multi-domain and membrane
proteins. (As these categories contain relatively few ex-
amples, comprising approximately 8% of the protein folds,
their inclusion or exclusion would not significantly change
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TABLE I. Log-Likelihood A of the Observed Data for the
Optimized Stretched Exponential Model and for Other
Models That Have Been Proposed Previously'

Log-likelihood
Optimal Observed Simulated
Model N data data
Stretched-exponential 3756 —40.7 —41.1+ 4.2
Exponential 710 -101.8 —26.0 + 22
Gaussian 522 —158.0 —-245+23
Equi-likely 448 —306.9 -191+17

fAlso shown are the log-likelihood values obtained for simulated
datasets where the corresponding model was known to be correct by
construction. Log-likelihood values substantially lower than those
obtained with the corresponding simulated data indicates that the
model does not adequately represent the observed data. The only
model investigated that cannot be rejected by the data is the stretched
exponential. The log-likelihood values for the simulated data are
substantially lower for the stretched exponential compared to the
other functional forms due to the random sampling of the few
examples of highly-likely folds.

our conclusions.) There are M = 808 protein families
distributed over a total of L = 375 observed folds, with 242
folds observed once (u; = 242), fifty-seven folds observed
twice (U, = 57, etc.), twenty-seven observed three times,
sixteen observed four times, six observed five times, eight
observed six times, five observed seven times, five ob-
served eight times, one observed ten times, two observed
eleven times, one observed twelve times, one observed
fourteen times, one observed nineteen times, one observed
twenty times, one observed twenty-six times, and one
observed thirty-one times. We of course do not know ,, the
number of folds that have not yet been observed.

RESULTS

The optimal parameters for the stretched exponential
are N = 3,756 and B = 0.150, with a log-likelihood A =
—40.7. The optimal values of N as well as the correspond-
ing maximum A values for the other models are summa-
rized in Table 1.

The distribution of values of A obtained in the bootstrap
analysis with synthetic datasets for each of the proposed
models are also summarized in Table I. As is shown, the
stretched exponential model is the only model that cannot
be rejected based on the observed log-likelihood values.
For the synthetic stretched exponential datasets, the
median of the distribution of optimal values of N is = 3577.
The median of the distribution of B values is 0.157. Ninety
percent of the fits to the synthetic data have values of N
between 2,105 and 8,069, indicating that this is the 90%
confidence interval for this parameter. The 68% confidence
interval (corresponding to one standard deviation in the
case of a normal distribution) is from N = 2,530 t0 5,575. A
similar analysis yields a 90% confidence interval for 8
between 0.106 and 0.227, with a 68% confidence interval of
0.124 and 0.195. The similarity of the parameter values
derived from the analysis of the synthetic datasets and the
values used to construct the datasets provide support for
the approximations used in the analysis, especially the

independence of the values of P(l) for each of the different
structures.

(W), the expected average number of folds observed I
times as calculated in Eq. (7), is plotted in Figure 1 for the
various models as well as for various values of N for the
stretched exponential. The observed values of {u} in the
SCOP database are plotted for comparison. Even with
optimal parameters, the stretched exponential model is
the only model that provides appreciable probability of
observing highly common structures. Although the uncer-
tainty in N is quite large, this causes only modest changes
in the values of () as well as other quantities calculated
below. As the value of N is increased in the range from
2,530 to 5,575, the corresponding value of B that maxi-
mizes A decreases from 0.187 t0 0.124, resulting in an even
more highly-stretched exponential. As a result, the addi-
tional possible folds tend to be extremely unlikely, with
small values of \;. These highly unlikely structures do not
have a strong impact on measurable quantities.

According to the equally-likely hypothesis, we are observ-
ing certain folds regularly because we have already ob-
served most possible folds. We would correspondingly
expect the rate of observation of new folds to rapidly
decline. In contrast, if the number of repeatedly-observed
folds is due to the fact that these folds are more common,
that means that less-common folds will continue to be
observed. This is shown in Figure 2 which portrays (L), the
average total number of folds observed, calculated with
Eq. (8) as a function of M, the number of protein families of
known structure, for the stretched-exponential models with a
range of N values as well as the other alternative models.

N represents the number of possible folds, including
unlikely ones that have never arisen. Zhang estimates
that there are approximately 17,175 protein families for
humans.?? The expected number of folds according to the
stretched-exponential model is approximately 1,600 for a
sample of this size. Thornton and co-workers estimate that
there are a total of 23,100 protein families.!* The expected
number of folds for a sample of this size is approximately
1,740. This number is again relatively insensitive to the
uncertainties in N; as N changes from 2,530 to 5,575, the
predicted value of L for M = 23,100 varies from 1,510 to
1,970.

Although according to the stretched-exponential model
the vast majority of folds have not been observed, the folds
that have been observed represent the folds most common
among protein families. As a result f, the proportion of all
protein families whose structure is that of a currently-
known fold as computed with Eq. (9), is approximately
0.70, significantly higher than the proportion of all folds
that have been observed. This quantity as a function of the
number of protein families of known structure is shown in
Figure 3 for the optimized stretched-exponential and
alternative models. f would also represent the probability
that the next protein family, if randomly chosen, would
have a previously-observed fold. Also shown is the compari-
son with the proportion of novel folds that have been
observed as the database of protein structures has expanded.
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Fig. 1. Comparison of (y), the expected values of y, as computed
using Eq. (7), for the optimized stretched exponential for three different
values of N ( ), the exponential model (— - -), the Gaussian model
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Fig. 2. The expected total number of observed folds, (L), computed
using Eq. (8) as a function of the number of protein families of known
structure, M, for the optimized stretched exponential model for three
different values of N ( ), compared with the corresponding curves
for the exponential model (- —-), the Gaussian model (- - - -), and the
equi-likely model (- - -).
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DISCUSSION
Dataset Dependence

A number of different databases exist that categorize
proteins of known structure into different folds. We have
chosen to use the SCOP database of Murzin and co-
workers.® Different results are obtained with other data-

(----), and the equi-likely model (- - -), compared with the observed
distribution of p, as catalogued by Murzin et al.’® For the stretched
exponential model, the values of B were optimized for each value of N.
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Fig. 3. The expected fraction of all protein families that form a
previously-observed fold, f, as calculated using Eq. (9), is plotted as a
function of the number of protein families of known structure. The results
of the optimized stretched exponential for three different values of N
( ) are compared with the results for the exponential model (— - -),
the Gaussian model (- - - -), and the equi-likely model (- - -). Also shown is
the observed values of fcomputed with the SCOP database: measurements
were totalled for five blocks of five years. The error bars are computed
based on the expectations for random sampling, and represent the 68%
confidence limits (thick lines) and the 95% confidence limits (thin lines).
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bases. For instance, the 3Dee database of Siddiqui and
Barton provides a SCOP-like hierarchy that focuses on
individual protein domains rather than entire proteins
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and protein chains (Siddiqui and Barton, unpublished
data). Omitting the peptides and membrane and cell
surface proteins, considering the grossest classifications
into folds for the proteins whose structures are designated
as “defined” and segregating the “undefined” proteins into
clusters with a minimum similarity of 1.0 results in a total
of 1,171 protein families divided into 484 folds, with 281
folds observed once and one fold observed 42 times. The
optimal stretched exponential for this data is with N =
2828 folds and a value of B of 0.185, similar to that
obtained with the SCOP dataset. The value of A is —50.2,
while parametric bootstrapping yield a range of A of
—49.5 = 4.2, demonstrating the ability of the stretched
exponential to represent the observed 3Dee distribution.
The CATH database of Thornton and co-workers use a
more restrictive criterion for classifying proteins into
similar folds. As a result, many sets of proteins that would
be considered to have the same fold in the SCOP and 3Dee
databases are classified as different folds in the CATH
database; the 826 different protein families classified
cluster into 590 folds, resulting in an average of only 1.4
families per fold, in contrast to the average of 2.15 in the
SCOP database and 2.42 for the 3Dee database. In the
CATH database, there are 532 folds found in only single
protein families. The large number of such single examples
results in an extremely stretched exponential with almost
a singularity in p(\;) at small A;. Not surprisingly, with
distinctions made between highly similar folds, the esti-
mated number of possible folds becomes extremely large
and uncertain.

Comparison With Previous Models

A number of previous investigators have tried to esti-
mate the total number of possible folds using different sets
of assumptions. One assumption made in some previous
estimates of N is to assume that the ratio of observed folds
to the number of protein families of known structure will
remain constant, so that the relationship between M and L
is linear. For instance, Orengo et al.!* observed a data-set
of 130 seemingly non-homologous protein families folding
into a total of 80 different folds, with 71 folds defined by
only one protein family and the remaining 59 families
divided up among the other 9 folds.'* They estimate that
this represents only one-third of the non-homologous
“super families” among the 3% of the current sequence
databases. Assuming that new folds are obtained at the
same rate as the remaining database of sequences is
analyzed, this suggests that the total number of folds is
80 X 33 X 3 = 7,920. This assumption is identical to
assuming that f, the probability that a new protein family
will represent a novel fold, is a constant over time. The
correctness of this assumption is highly unlikely given the
indications that certain folds are much more likely than
others; given the preferential early observation of the more
frequent folds, the percentage of observed folds that are
novel should continuously decline. This assumption also
seems to be contradicted by the measured values of f
presented in Figure 3.

Zhang recently made an estimate that the total number
of folds is less than 5,200 based on a consideration of the
“degeneracy” d(t), defined as the total number of observed
protein families divided by the total nhumber of observed
folds, at any particular time t.12 For the earlier version of
the SCOP dataset available at the time, d(t) = 1.955.
Zhang also considered the quantity a(t), defined by the
rate of observance of new structures divided by the rate of
observance of new folds. This quantity is also an explicit
function of time. Zhang estimated the value of a(t) to be
approximately 0.3. As new structures are solved, the
degeneracy will continue to increase until it is equal to
1/a(t). a(t) will tend to decrease as more and more of the
common folds are observed. This means that the long-time
asymptotic value of d(t), notated by d(t*), has to be greater
than or equal to the current value of 1/a(t) = 3.3. Assuming
that the total number of protein families in the human
data-set is equal to 17,175, Zhang computed that the max-
imum number of folds is equal to the total number of folds
divided by the asymptotic value of d(t), or 17,175/3.3 =
5,200. In actuality, d(t) may not reach its asymptotic value
by the time the whole human data-set is available, so a
more appropriate limit for d(t) is its current value. With
the database used in this paper, d(t) is currently 808/375 =
2.15. Using this value forces a revised estimate of the
maximum number of folds to 7,988.

Alexandrov and Go estimated the total number of pro-
tein folds at around 6,700 by assuming that the underlying
distribution of p(\;) was a normal distribution.’® Con-
versely, Wang obtained an estimate of only about 400 folds
by considering that all possible folds are equally likely.?
Both of these models can be rejected based on their
inadequate representation of the observed data, as shown
in Table I. Wang also considered the possibility that these
superfolds were drawn from a different distribution, an ad
hoc assumption that violates the spirit of Occum’s razor.

In a more recent paper, Zhang and DeL.si use a different
model to estimate the number of protein folds.’® In this
model, Iy, the probability that a fold is formed by x families
is given by

N1 N

I, = (1 — M) IVE (10)

While they show that their model is not obviously inad-
equate to explain the distribution of relatively rare struc-
tures (y, for 1 = | = 8), they do not examine how well their
model explains the number of more likely structures. We
note that according to their formulation and their estimate
of the total number of possible folds, the probabilities of
having one fold observed twenty-six and thirty-one times
in a sample of 808 protein families is approximately 2.9 X
1075 and 1.3 X 1075, respectively, making it highly un-
likely that the proposed model is consistent with the
observed data.

This approach assumes that proteins of known structure
represent a random sampling of real proteins found in
nature. This assumption is unlikely to be true. It may be
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that certain folds are more likely to solve by crystallogra-
phy or NMR spectroscopy. It also may be that certain folds
are more likely to be found in the organisms under study.
Finally, certain families may be represented by multiple
examples that share an undetectable evolutionary relation-
ship. One indirect method to identify such biases is
through looking at the time evolution of f, the number of
new protein families that have pre-observed folds. If the
sampling biases were constant, we would expect the values
of f at different times to follow the theoretical curves shown
in Figure 3. With technological innovations such as the
rise in the use of NMR spectroscopy, we would expect that
sampling biases would change, resulting in deviations in
the value of f. In general, as shown in Figure 3, the
observed values of f track the theoretical predictions based
on the stretched-exponential model, with a possibly-
significant deviation at the most recent datapoint. Such a
deviation hints that there may be time-dependent biases,
so that there are more folds observed multiple times than
would be expected with a random sampling. This bias
would cause us to underestimate the true value of N.

CONCLUSION

According to some of the designability models, there is a
wide range in probabilities of different folds among biologi-
cal proteins, with many rare folds and a few extremely
abundant folds.3*7 These models are supported by the
success of the stretched exponential model in modeling the
observed distribution of protein folds. Conversely, the
models that try to explain this distribution based on a
relatively small number of equally-likely folds can be
statistically rejected.

There has been interest in generating a comprehensive
set of all protein folds. The results presented here indicate
that this will be a significant challenge, given the large
number of highly-unlikely folds. Expansion of the data-
base to include more protein families from, for example,
different organisms, will keep increasing the number of
relevant folds, as shown in Figure 2. On the other hand, it
will be significantly easier to generate a less-than-
comprehensive list that has the dominant protein folds.
For instance, according to the most optimized model,
although we have only observed 375 out of the 3,756
possible folds, this set still includes the structures of 70%
of all protein families, even if there were an infinite
number of such families. A catalog of only 930 folds would
encompass approximately 90% such families.
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