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ABSTRACT

The rapid and accurate approach to distinguish be-
tween coding RNAs and ncRNAs has been playing
a critical role in analyzing thousands of novel tran-
scripts, which have been generated in recent years
by next-generation sequencing technology. Previ-
ously developed methods CPAT, CPC2 and PLEK can
distinguish coding RNAs and ncRNAs very well, but
poorly distinguish between small coding RNAs and
small ncRNAs. Herein, we report an approach, CP-
Pred (coding potential prediction), which is based
on SVM classifier and multiple sequence features in-
cluding novel RNA features encoded by the global
description. The CPPred can better distinguish not
only between coding RNAs and ncRNAs, but also
between small coding RNAs and small ncRNAs than
the state-of-the-art methods due to the addition of the
novel RNA features. A recent study proposes 1335
novel human coding RNAs from a large number of
RNA-seq datasets. However, only 119 transcripts are
predicted as coding RNAs by the CPPred. In fact, al-
most all proposed novel coding RNAs are ncRNAs
(91.1%), which is consistent with previous reports.
Remarkably, we also reveal that the global descrip-
tion of encoding features (T2, C0 and GC) plays an
important role in the prediction of coding potential.

INTRODUCTION

Recently, next-generation sequencing technology has gener-
ated thousands of novel transcripts (1–4). Many of them are
non-coding RNAs (ncRNAs) (5,6). Although they cannot
encode proteins, many experiments have also demonstrated
that they play important biological roles in various biolog-
ical processes, such as gene regulation/expression, gene si-
lencing, and RNA modification and processing (7–10). Fur-
thermore, ncRNAs also tend to exhibit striking tissue speci-
ficity, functionality conserved (11,12), and have become the
key to disease development processes (13–16).

However, there are growing evidence that ncRNAs could
contain small open reading frames (sORFs, ≤303 nt) en-

coding micropeptides (17–25). In 2002, Rohrig et al. dis-
cover that a long non-coding RNA (lncRNA, >200 nt) with
679 nucleotides is in fact a messenger RNA (mRNA) (25).
The RNA is transcribed from a gene called early nodulin 40
(ENOD40), whose two open reading frames (ORFs) encode
two micropeptides with 12 and 24 amino acids, respectively.
In 2007, the mRNA of ‘polished rice’ (pri) is originally an-
notated as lncRNA in Drosophila, but it contains sORFs
(17,18), which encode four micropeptides with 11, 11, 11
and 32 amino acids, respectively. The pri has an essential
role as a key transcription factor associating with activating
development (17,19). Subsequently, calcium-related sORF
encoding peptides are found, which are able to regulate
muscle contraction (22–24). Since then, the micropeptides
harbored in other ncRNAs are found gradually (20,21).
Furthermore, ribosome profiling, mass spectrometry (MS)
and proteogenomics have been performed for detection of
sORF-encoded peptides recently (26–33).

Nevertheless, the biological significance and function
of most ncRNAs remain unclear comparing with coding
RNAs. Rapid and accurate coding potential prediction
of transcripts is critical for analyzing these data. From a
computational perspective, distinguishing between coding
RNAs and ncRNAs is a binary classification task and var-
ious tools have been developed (34–45). In 2006, Liu et al.
present an SVM-based tool (43), namely COCN, which
could predict coding RNAs from ncRNAs on the basis of
a hybrid feature set. However, COCN is slow in calculating
abundant datasets. CPC (Coding Potential Calculator) (38)
uses support vector machine to differentiate coding RNAs
from ncRNAs, which is developed by Kong et al. in 2007.
Six biologically meaningful features are extracted, such as
ORF quality, ORF coverage, ORF integrity, sequence sim-
ilarity with known proteins. However, the performance of
CPC depends on the quality of multiple sequence align-
ment. The coding potential calculator CPC1 to CPC2 is
updated in 2017 (39). The CPC2 (a predictor of coding po-
tential based on ORF length, Fickett score, ORF integrity
and isoelectric point) is much faster and more accurate than
CPC1, in particular for lncRNAs. Moreover, the model of
CPC2 is species-nonspecific. In 2013, Wang et al. present a
logistic regression model CPAT (42) for differentiating ncR-
NAs from coding RNAs, which uses four features (ORF
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length, ORF coverage, Fickett score and Hexamer usage
bias). They indicate that the length of ORF is the most
important feature for coding potential prediction. Overall,
those tools mentioned above have been developed for dis-
tinguishing ncRNAs from coding RNAs in general.

On the other hand, many tools such as PLEK,
iseeRNA, lncRScan-SVM, FEELnc, COME, DeepLNC
and LncRNApred can predict lncRNAs from coding RNAs
(34,35,37,40,41,44,45). PLEK, IseeRNA and LncRscan-
SVM are based on the SVM algorithm. Among them,
iseeRNA (35) is developed to predict long intergenic non-
coding RNAs (lincRNAs). PLEK (34) is designed by an
improved k-mer strategy to identify lncRNAs from cod-
ing RNAs in 2014. LncRScan-SVM (45) is established to
distinguish coding RNAs and lncRNAs by analyzing gene
structure, the conservation of RNA sequence and codon
sequence. In 2016, Wucher et al. apply ORF coverage,
codon usage and the frequency of the nucleotides to pre-
senting FEELnc with Random Forests (40), which could
identify lncRNAs even without a training set of non-coding
RNAs. Moreover, DeepLNC (37) can be used to identify
the lncRNAs from coding RNAs, which uses k-mer fre-
quencies of transcripts and Deep Neural Network. How-
ever, it is unclear which features are used. In 2017, Hu
et al. develop a supervised machine learning tool COME
(41), which uses diversified sequence-based and experimen-
tal features. In particular, the features are encoded by us-
ing decompose-compose method. In 2018, Schneider et al.
propose a scheme (36), which is based on SVM to differen-
tiate lncRNAs from coding RNAs by using sequence fea-
tures that are selected by PCA. The sequence features in-
clude the relative length of first ORF and frequencies of K-
mer. The method is trained and tested on human, mouse
and zebrafish data with the accuracy of 98.21%, 98.03%
and 96.09%, respectively. They also predict 81.2% of hu-
man pseudogenes and 91.7% of mouse pseudogenes. Be-
sides, in 2018, McGillivray et al. develop a Bayesian al-
gorithm to predict the function of upstream open reading
frames (uORFs) based on 89 features (46). Subsequently, a
functional sORF-encoded peptide predictor (FSPP) is built
by Li et al. to detect the sORF-encoded peptides and their
functions (47).

Although current computational methods have yielded
encouraging results, they are facing certain limitations. For
example, they predict poorly on the data of sORFs, which
have been studied recently as mentioned above. Inspired
by the work of Wang et al. (42), we plotted three fea-
tures (ORF length, Fickett score, Hexamer score) in a
three-dimensional space for all RNA transcripts (Human-
Training, which contain 33 360 coding RNAs and 24 163
ncRNAs, Figure 1A) and small RNA transcripts (Figure
1B). From Figure 1A, most of the coding RNAs and ncR-
NAs can be distinguished by using these three features only
with slight overlapping. Next, we extracted small coding
RNAs with ORF <303 nucleotides in length and small ncR-
NAs (see the section ‘Datasets’ in ‘Materials and Methods’)
from Human-Training dataset and plotted Figure 1B. It can
be seen that these three features are incapable of distin-
guishing between small coding RNAs and small ncRNAs.
Herein, we developed a coding potential prediction tool
(CPPred), which used SVM to differentiate ncRNAs from

coding RNAs on the basis of sequence features, such as
ORF length, ORF coverage, ORF integrity, Fickett score,
Hexamer score, Isoelectric point (pI) of a predicted pep-
tide, Grand average of hydropathicity (Gravy) of a pre-
dicted peptide, estimation of the stability (Instability) of
a predicted peptide and global descriptor (CTD) features.
The CTD (composition (C), transition (T) and distribution
(D)) is originally proposed for predicting protein folding
class, which is global protein sequence descriptors estab-
lished by Dubchak’s work (48). In this work, CTD is used
to denote the global transcript sequence descriptors. The
CTD features include nucleotide composition, nucleotide
transition and nucleotide distribution. It should be noted
that the CTD features are firstly proposed by us to dis-
tinguish between coding RNAs and ncRNAs in eukary-
otes. Distinguishing coding RNAs from ncRNAs based
on the CTD features in prokaryote have been explored
in 2009 (49); however, overlooked in recent literature. Al-
though the nucleotide composition is as well already rep-
resented in the Fickett score, the nucleotide transition and
nucleotide distribution are novel features. From Figure 4,
the nucleotide transition and nucleotide distribution fea-
tures (T2, C0 and GC) are important features to classify
coding RNAs and ncRNAs. Besides, the mRNA secondary
structure of around the start and stop codons has an impor-
tant potential impact on ribosome pausing (50,51). Thus,
RNA secondary structural feature contributes to predicting
protein coding potential. Moreover, CTD is built to predict
protein folding class primitively (48), so in this work, the
CTD features are connected with RNA structural features.
The CTD features not only are beneficial to prediction of
coding potential (49), but also prove to be important fea-
tures in RNA-binding protein prediction (52), RNAs func-
tional identity (53) and promoter recognition (54). Subse-
quently, we trained the model on human dataset, and then
tested it on human, mouse, zebrafish, fruit fly and Saccha-
romyces cerevisiae. The data of several popular species are
integrated to avoid species specificity. An integrated model
is built. The testing results show that CPPred with higher
Matthews correlation coefficient (MCC) (55) is particularly
more effective on sORF data when compared with other
programs. Moreover, to highlight the performance of CP-
Pred on the sORF data, we compared it with sORF finder
(56). The sORF finder is developed by Hanada et al. and
using nucleotide composition to identify sORF. It is proved
by Cheng et al. to be superior to other tools for predicting
sORF (57). Additionally, CPPred is convenient because it
only needs FASTA format sequence files as inputs.

MATERIALS AND METHODS

Dataset

Two models are built for distinguishing between cod-
ing RNAs and ncRNAs. The first one (Human-Model)
is trained by human data, and then tested on human,
mouse, fruit fly, zebrafish and S. cerevisiae. The second
one (Integrated-Model) is built for integrated species,
including human (Homo sapiens), mouse (Mus musculus),
zebrafish (Danio rerio), fruit fly (Drosophila melanogaster),
S. cerevisiae, nematode (Caenorhabditis elegans) and thale
cress (Arabidopsis thaliana). As the former, we downloaded
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Figure 1. (A) Three-dimensional plot of Hexamer score, Fickett score and ORF length on 33360 coding RNAs and 24163 ncRNAs (Human-Training).
(B) Three-dimensional plot of Hexamer score, Fickett score and ORF length on 508 small coding RNAs and 508 small ncRNAs, which extracted small
coding RNAs with ORF <303 nucleotides in length and small ncRNAs from Human-Training.

Figure 2. The flowchart of building training set and testing set of hu-
man. Human coding RNAs with transcript status ‘KNOWN’ are down-
loaded from NCBI RefSeq and human ncRNAs are downloaded from En-
sembl. The initial dataset includes 50 040 coding RNAs and 37 297 ncR-
NAs. For ncRNAs, the data that have no source comments and are not
annotated with Havana in the corresponding of gff3 file are removed. Af-
ter that, the number of coding RNAs and ncRNAs is 50 040 and 36 244,
respectively. We randomly selected two-thirds of the data as training set,
a collection of 33 360 coding RNAs and 24 163 ncRNAs, which is called
Human-Training. Then, the rest of the data are stored as a testing set. At
the same time, we reduced redundancy between the testing and training
set using CD-hit with sequence identity cutoff ≥80%. Finally, 8557 coding
RNAs and 8241 ncRNAs are kept as Human-Testing. Then, the sequences
with ORF shorter than 303 nucleotides in length are extracted from cod-
ing RNA in Human-Testing. Meanwhile, the same amount of considerable
length ncRNAs from Human-Testing are selected randomly. As a result,
641 coding RNAs and 641 ncRNAs are kept as Human-sORF-Testing.

human coding RNAs as positives from NCBI RefSeq
(58,59) (https://www.ncbi.nlm.nih.gov/nuccore/?term=
human[orgn]±AND±src db refseq known[prop]±AND±
biomol rna[prop]) and from Ensembl database (60,61)
(ftp://ftp.ensembl.org/pub/release-90/fasta/homo sapiens/
ncrna/Homo sapiens.GRCh38.ncrna.fa.gz), human ncR-
NAs as negatives are obtained as of 26 November 2017
(see Figure 2). The transcript status of coding RNAs is
‘KNOWN’. However, for ncRNAs, we removed 1053
ncRNA sequences without source comments, and these
sequences are not annotated with Havana in the cor-
responding gff3 file. Eventually, the total numbers of

annotated coding RNAs and ncRNAs are 50 040 and
36 244, respectively. We randomly selected two-thirds
(41) of data as a training set, that is, the set including
33 360 coding RNAs and 24 163 ncRNAs, which is called
Human-Training. Then, the remaining data are stored as
a testing set. To improve the robustness of the assessment
of accuracy, we reduced redundancy between the testing
and training sets with a threshold of 80% (62–64) by the
open-source program cd-hit-est-2d in CD-hit (65), which
uses a short word filter to avoid unnecessary alignments
and has been widely used as a clustering algorithm,
resulting in 8557 coding RNAs and 8241 ncRNAs as
Human-testing. Besides, the basic command of cd-hit-est-
2d is cd-hit-est-2d –i training human –i2 testing human
–o testing human redundancy –c 0.8 –n 5. Meanwhile, we
examined the different threshold (<80%) for removing the
redundancy much more stringently between the testing
and training sets. The redundancy between the testing and
training sets is removed by program cd-hit-2d in CD-hit
with threshold of 75%, 70% and 60%, respectively. The
performance of CPPred is shown in Supplementary Table
S10 on the testing sets. The last row in Supplementary
Table S10 is the performance of CPPred in the manuscript.
The result shows that removing redundant sequences
with ≥80% similarity is enough to obtain independence
between test and training sets. Besides, the BLASTCLUST
is also tried and used to exclude redundant RNA sequences
with the similarity threshold of 75%, 70%, 60%, 50%,
40%, 30%, 20% and 10%, respectively. The result shows
the same conclusion. That is because RNA sequences only
have four letters, it is easy to get high identity between
unrelated sequences. When we run a regular blast search,
we often find top hits at very high identities. In general,
comparing RNAs at low identity <75% may not be very
effective. The threshold of 80% is a stringent cutoff. For
example, the sequence redundancy in the datasets of CPC2
(39), lncRScan-SVM (45) and lncADeep (66) is removed
by using CD-hit with thresholds of 0.9, 0.8 and 0.95,
respectively. The sequence redundancy of CONC’s datasets
(43) is removed by using NCBI BLASTCLUST with the
‘-L 0.7’ option, and the sequence similarity of CPC’s
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Table 1. The testing set for mouse, zebrafish, S. cerevisiae and fruit fly

Coding RNAs ncRNAs
Mouse-Testing 31 102 19 930
Mouse-sORF-Testing 846 1000
Zebrafish-Testing 15 594 10 662
Zebrafish-sORF-Testing 387 500
S.cerevisiae-Testing 6713 413
S.cerevisiae-sORF-Testing 505 413
Fruit-fly-Testing 17 400 4098
Fruit-fly-sORF-Testing 381 381

datasets (38) is removed by using BLASTN with evalue
<1e-2. For COME (41), only the overlapping transcripts
are eliminated between the training and testing sets. While
for the datasets of PhyloCSF (67), CPAT (42), CNCI (68),
iSeeRNA (35), PLEK (34), lncRNA-ID (69), lncScore (70),
FEElnc (40), longdist (36) DeepLNC (37) and mRNN
(71), no redundancy is removed. For the reason that the
prediction of sORF is difficult, the sequences with ORF
fragments <303 nucleotides in length from coding RNAs
in Human-Testing are selected to build an interesting and
challenging testing set. Meanwhile, the same amount of
comparable length ncRNAs from Human-Testing were
filtered out randomly (34,39). As a result, 641 coding RNAs
and 641 ncRNAs are kept as Human-sORF-Testing. Based
on the same building method of the human testing sets,
we constructed Mouse-Testing, Mouse-sORF-Testing,
Zebrafish-Testing, Zebrafish-sORF-Testing, S. cerevisiae-
Testing, S. cerevisiae-sORF-Testing, Fruit-fly-Testing and
Fruit-fly-sORF-Testing. These datasets are downloaded
from Ensembl, as shown in Table 1.

Afterward, several popular species are integrated for the
sake of eliminating the problems caused by the specificity
of species and the differences between the databases. The
data for human, mouse, zebrafish, fruit fly, S. cerevisiae, ne-
matode and thale cress are downloaded from NCBI Ref-
Seq including 525 316 coding RNAs and 55 198 ncR-
NAs. Furthermore, to reduce the computational effort and
balance the proportion of human negative-positive data,
we randomly selected 52 530 coding RNAs and 27 600
ncRNAs as training set with the same percentage of each
species, which is called Integrated-Training. The redun-
dancy of the remaining is removed with sequence identity
cutoff ≥80% (62–64). The Integrated-Testing (balance data)
is constructed with 13 903 coding RNAs and 13 903 ncR-
NAs (34,39). As the same building procedure with Human-
sORF-Testing, the Integrated-sORF-Testing is obtained,
which contains 11 634 small coding RNAs and 11 634 small
ncRNAs.

CPPred features

To predict the coding potential of RNA sequences, we ex-
tracted features from recently published scientific literature
(39,42), and novel CTD features are added.

We used four features proposed by CPAT (42), includ-
ing ORF length, ORF coverage, Fickett score and Hexamer
Score. Similarly, ORF integrity and isoelectric point were
derived from CPC2 (39). Next, the Gravy and Instability
mentioned by CPC2 are also added. In addition, the algo-
rithm of Hexamer score and Fickett score were discussed
in detail (42,72,73). The Fickett score is calculated by con-

sidering eight properties of coding sequences. Four of them
are composition values with the frequencies of the four nu-
cleotides from RNA sequence. The other four parameters
are position value, which reflect the degree to codon prefer-
ence. Furthermore, the feature of ORF length is used to pre-
dict the coding potential (38,39,42,43), but it relies on the
full-length transcript (41). In this study, although the ORF
length requires annotation of the full-length transcript, we
still selected it because of its identifiable power and ease
of calculation. The ORF length is the length of the maxi-
mum open reading frame, which starts with a start codon
and ends with a stop codon (UGA, UAA or UAG). Here,
the AUG is selected as the start codon. Although the use of
non-AUG has been constantly described (26,29,30,33,74–
76), there is no clear consensus on how to choose translation
start sites (77).

In particular, we added 30 new features, which were CTD
features. In this study, CTD is used to denote the global
transcript sequence descriptors. The transcript is a sequence
containing four types of nucleotides A, T, G and C. The nu-
cleotide composition (first index C) describes the percent
composition of each nucleotide in a transcript sequence,
which is contained in Fickett score. The nucleotide transi-
tion (second descriptor T) describes the percent frequency
with conversion of four nucleotides between adjacent po-
sitions. Subsequently, we calculated five relative positions
along the transcript sequence of each nucleotide, with the 0
(first one), 25%, 50%, 75% and 100% (last one), to describe
the nucleotide distribution (last descriptor D).

For example, the RNA sequence is ACTTGCAGCC
CCCCGCCTGTCCCGAG CCGCGCGGGCGCCAGC
TCAGTTTGTCCGCGGCGG, which contains 5 adenines
(As), 9 thymines (Ts), 20 guanines (Gs) and 26 cytidines
(Cs). The features of first descriptor C are 5/60 = 0.083,
9/60 = 0.15, 20/60 = 0.33 and 26/60 = 0.43, respectively.
We use A, T, G and C to represent the four features. For
the second descriptor T, there is zero transition between A
and T, five transitions between A and G, four transitions be-
tween A and C, five transitions between T and G, six tran-
sitions between T and C and twenty transitions between G
and C. Therefore, the frequencies of these transitions are
0/59 = 0.00, 5/59 = 0.085, 4/59 = 0.068, 5/59 = 0.085,
6/59 = 0.10 and 20/59 = 0.34. We use AT, AG, AC, TG,
TC and GC to represent the six features. The first, 25%,
50%, 75% and 100% of As are located within 1, 1, 25, 40
and 45 residues, respectively. The D descriptors for As are
1/60 = 0.017, 1/60 = 0.017, 25/60 = 0.42, 40/60 = 0.67 and
45/60 = 0.75. Likewise, the D descriptors for Ts, Gs and Cs
are 0.05, 0.067, 0.72, 0.80, 0.85, 0.083, 0.40, 0.57, 0.83, 1.00,
0.033, 0.22, 0.38, 0.65 and 0.97, respectively. We use A0, A1,
A2, A3, A4, T0, T1, T2, T3, T4, G0, G1, G2, G3, G4, C0,
C1, C2, C3 and C4 to represent the 20 features.

Feature selection

The 38 features as mentioned may include redundant fea-
tures, so a feature selection process is used to filter out re-
dundant features for coding potential prediction. In this
work, mRMR-IFS method is used to select the best sub-
set of features (78–81). The mRMR program is developed
by Peng et al. (82), which selects good features based on
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mutual information with the minimal redundancy, maximal
relevance criteria. First, the mRMR program is used to rank
the 38 features in the training set. Then, Incremental Fea-
ture Selection (IFS) (78) is used to increase the features one
by one in descending based on the mRMR ordering. For
each additional feature, a new subset of feature is generated.
Therefore, a total of 38 feature subsets are generated for 38
sorting features.

According to the obtained 38 feature subsets, we select
the corresponding feature sets from the whole training set.
Through 10-fold cross-validation on the training set, the
best subset of features is selected and served as the final
model.

SVM classifier

We used the Libsvm (83) (Libsvm-3.22) for predicting cod-
ing RNAs and ncRNAs. The radial basis function is se-
lected as the kernel function, and the MCC value is used
as the function to optimize the parameters (C and γ ). Here,
for the Human-Training, the optimal values of C = 1024.0,
γ = 0.5 are obtained by grid search method with the select-
ing top 37 features. For the Integrated-Training, the opti-
mal values of C = 90.5096679919, γ = 1.0 are gained with
38 features. Moreover, for the Human-Training with CTD
features and non-CTD features, the optimal values of (C,
γ ) are (1024.0, 2.0) and (16384.0, 1.0), respectively.

Performance evaluation of CPPred

The CPPred is evaluated by the widely used standard per-
formance metric, which are sensitivity (SN), specificity (SP),
accuracy (ACC), precision (PRE), F-score, AUC and MCC
(55). These evaluation indexes are defined as follows:

Sensitivity (SN) = T P
T P + F N

Specificity (SP) = TN
TN + F P

Precision (PRE) = T P
T P + F P

Accuracy (ACC) = T P + TN
T P + TN + F P + F N

F − score = 2 ∗ PRE ∗ SN
PRE + SN

Matthews Correlation Coefficient (MCC)
= T P∗TN−F P∗F N√

(T P+F N)∗(T P+F P)∗(TN+F P)∗(TN+F N)

where TP stands for true positive, which is the number of
positive samples identified correctly, FN, TN, FP represent
false negative, true negative and false positive, which denote
the number of positive samples identified incorrectly, nega-
tive samples identified correctly, negative samples identified
incorrectly, respectively. The MCC is an overall measure-
ment of performance and another objective assessment in-
dex. AUC is the area under the receiver operating charac-
teristic curve.

Figure 3. Pipeline of the CPPred. Multiple features are extracted from
RNA or protein sequences. Herein, the CTD features include nucleotide
composition, nucleotide transition and nucleotide distribution. The ORF
coverage is defined as the ratio of ORF to the length of a transcript. The
ORF length, Hexamer score and Fickett score are discussed in the ‘CPPred
features’ section. The integrity of the ORF is defined as whether the ORF
starts with a start codon (AUG) and ends with a stop codon (UGA, UAA
or UAG). PI, Gravy and Instability are calculated by the ProtParam. After
that, using mRMR-IFS, the best feature subset is selected and used as input
to the SVM classifier. Eventually, we got the final model, which is tested
and evaluated by the testing sets.

RESULTS AND DISCUSSION

Pipeline of CPPred

In CPPred, an SVM model is applied to calculating cod-
ing potential of a transcript by using features derived from
RNA and protein sequences (see Figure 3), which is de-
signed for distinguishing between coding RNAs and ncR-
NAs. First, we constructed a training dataset, which con-
tained coding RNAs and ncRNAs. Then, 38 features are
calculated for each RNA or protein sequence. The unin-
formative features are reduced by using mRMR-IFS and
the best feature subset is picked out. Based on the feature
subset, the SVM classifier is used to obtain a model on the
training set. Finally, the CPPred is analyzed and evaluated
on testing sets.

Feature selection by the mRMR-IFS method

Here, mRMR-IFS (78) method is chosen for feature selec-
tion. For each feature subset, the corresponding features
are selected and 10-fold cross-validation is performed on
the training set. In Figure 4, for Human-Training, the best
predictive performance is obtained by using top 37 features
with the highest MCC value of 0.953 (SN, SP, ACC and
AUC are 97.81% 97.57%, 99.68% and 0.977, respectively).
While for the Integrated-Training, the best predictive per-
formance is achieved by applying all the features with MCC
value of 0.941 (SN, SP, ACC and AUC are 97.62% 96.75%,
97.32% and 0.995, respectively). Therefore, in order to pre-
dict coding potential of transcripts, we selected top 37 fea-
tures and all features as the optimal feature sets to create
the final models.
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Figure 4. mRMR-IFS feature selection. The mRMR-IFS scatter plot of
the feature subsets are drawn by R tool, which corresponds to the two
training sets that are Human-Training and Integrated-Training, respec-
tively. Wherein the x-coordinate is the number of features in the feature
subset, and the y-coordinate represents the MCC of the corresponding 10-
fold cross-validation.

In addition, the value of MCC dramatically increased to
0.920 on the Human-Training in Figure 4 after adding the
seventh feature and then the MCC tended to be stable. The
top seven features include ORF integrity, ORF Coverage,
Instability, T2 (CTD feature), C0 (CTD feature), isoelectric
point and ORF length (Supplementary Table S7). In partic-
ular, the seventh feature is the length of ORF. At the same
time, for the Integrated-Training, the MCC value (MCC =
0.925) increased suddenly after the fifth feature was added.
The top five features contain ORF coverage, ORF integrity,
GC (CTD feature), Instability and ORF length (Supple-
mentary Table S8). Moreover, the fifth feature is also the
length of ORF. In conclusion, the length of the ORF is
a more crucial feature for distinguishing between coding
RNAs and ncRNAs, which is consistent with the findings
by Wang et al. (42).

The top seven features of Human-Training and the top
five features of Integrated-Training are important to dif-
ferentiate coding RNAs from ncRNAs. Among these im-
portant features, ORF coverage and ORF length are from
CPAT (42). The isoelectric point, length and integrity of the
ORF are from CPC2 (39). Of the remaining important fea-
tures, T2, C0 and GC are derived from CTD features, which
indicate the importance of CTD features for distinguishing
between coding RNAs and ncRNA. Besides, in Figure 4, it
also reveals that the ORF length, ORF coverage, ORF in-
tegrity and Instability are shared among species, while pI,
T2 and C0 are human-specific.

Performance of CPPred (Human-Model)

To evaluate our method CPPred, for Human-Model, we
compared CPPred with CPAT (42), CPC2 (39) and PLEK

(34) on testing sets of human, mouse, zebrafish, S. cere-
visiae and fruit fly. Moreover, for sORF testing sets of hu-
man, mouse, zebrafish, S. cerevisiae and fruit fly, the method
sORF finder (56) has also been added for comparison. The
results of Human-Testing are shown in Table 2. The ac-
curacy of CPPred, CPAT, CPC2 and PLEK are 96.23%,
94.33%, 93.07% and 96.73%. The AUCs of them are 0.992,
0.984, 0.982 and 0.993. The MCCs of them are 0.925, 0.886,
0.862 and 0.935. For Human-sORF-Testing, which is a
challenging set including 641 small coding RNAs and 641
small ncRNAs, the results are listed in Table 3. Signifi-
cantly, CPPred is much better than the other three methods
(CPAT, CPC2 and sORF finder) with MCC of 0.654 versus
0.472, 0.125 and 0.262. Overall, from the two testing sets,
our method performs better than CPAT and CPC2, how-
ever, slightly worse than PLEK, probably due to the high
level of redundancy between the two human testing sets
and PLEK’s training set (84). Herein, we downloaded the
human training set of PLEK from https://sourceforge.net/
projects/plek/. Subsequently, we used the CD-HIT tool with
a value of 0.8 as the threshold of sequence identity to ana-
lyze the redundancy of between human testing set of CP-
Pred and human training set of PLEK. The results show
that 3944 (3944/8557 = 46.1%) coding RNAs and 5411
(5411/8241 = 65.7%) ncRNAs are redundant sequences be-
tween the human testing set of CPPred and human train-
ing set of PLEK, respectively. Besides, the predictive perfor-
mance of PLEK dropped behind the other methods (CP-
Pred, CPAT, CPC2 and sORF finder) when testing with
mouse, zebrafish, S. cerevisiae and fruit fly (Tables 4 and
5; Supplementary Tables S1–6). Moreover, from Table 4 the
CPPred outperformed CPAT, CPC2 and PLEK with MCC
of 0.926 versus 0.923, 0.909 and 0.796 on Mouse-Testing.
Besides, CPPred predicted better than CPAT, CPC2, PLEK
and sORF finder with MCC of 0.518 versus 0.392, 0.140,
0.402 and 0.182 on Mouse-sORF-Testing in Table 5.

In addition, for the testing sets of zebrafish and S.
cerevisiae, CPPred also achieved the best performance.
The MCCs of CPPred in the Zebrafish-Testing, Zebrafish-
sORF-Testing, S. cerevisiae-Testing and S. cerevisiae-
sORF-Testing are 0.9, 0.387, 0.9 and 0.440, respectively
(Supplementary Tables S1–4). However, the MCCs of CP-
Pred in Fruit-fly-Testing and Fruit-fly-sORF-Testing are
0.837 and 0.225 (Supplementary Tables S5 and 6), which
are worse than the MCCs of CPAT (MCCs are 0.916 and
0.565), respectively. The reason may be that the model of
CPAT is trained on the fruit fly dataset, while the model of
CPPred is trained on the human dataset.

It is noteworthy that, in most cases, the CPPred in the
testing of sORF is much better than CPAT, CPC2, PLEK
and sORF finder.

Performance of CPPred (Integrated-Model)

Due to the specific differences among the species, we tested
Integrated-Model in the Integrated-Testing and Integrated-
sORF-Testing, and the results are presented in Tables 6 and
7, respectively. CPPred performed better than CPAT (42),
CPC2 (39), PLEK (34) and sORF finder (56) (see MCC,
AUC and ACC in Tables 6 and 7). Noteworthy, the model of
CPC2 is species-neutral (39), and the performance of CPC2
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Table 2. Comparison of CPPred (Human-Model) and CPAT, CPC2, PLEK on Human-Testing

Method SP (%) SN (%) PRE (%) ACC (%) F-score AUC MCC
CPPred 97.04 95.44 97.10 96.23 0.963 0.992 0.925
CPAT 94.07 94.58 94.30 94.33 0.944 0.984 0.887
CPC2 95.30 90.92 95.26 93.07 0.930 0.982 0.862
PLEK 98.10 95.42 98.11 96.73 0.967 0.993 0.935

Table 3. Comparison of CPPred (Human-Model) and CPAT, CPC2, PLEK, sORF finder on Human-sORF-Testing

Method SP (%) SN (%) PRE (%) ACC (%) F-score AUC MCC
CPPred 97.97 63.34 96.90 80.66 0.766 0.928 0.654
CPAT 95.63 45.09 91.17 70.36 0.603 0.850 0.472
CPC2 95.48 11.23 71.29 53.35 0.194 0.799 0.125
PLEK 97.19 77.85 96.52 87.52 0.862 0.953 0.765
sORF finder 29.33 91.11 56.32 60.22 0.696 0.592 0.262

Table 4. Comparison of CPPred (Human-Model) and CPAT, CPC2, PLEK on Mouse-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC MCC
CPPred 97.70 95.57 98.48 96.40 0.970 0.993 0.926
CPAT 96.65 96.10 97.81 96.32 0.970 0.993 0.923
CPC2 95.86 95.86 97.30 95.61 0.964 0.991 0.909
PLEK 93.43 87.61 95.41 89.88 0.913 0.969 0.796

Table 5. Comparison of CPPred (Human-Model) and CPAT, CPC2, PLEK, sORF finder on Mouse-sORF-Testing

Method SP(%) SN(%) PRE(%) ACC(%) F-score AUC MCC
CPPred 97.00 46.81 92.96 74.00 0.623 0.906 0.518
CPAT 96.20 33.69 88.24 67.55 0.488 0.848 0.392
CPC2 95.10 12.77 68.79 57.37 0.215 0.789 0.140
PLEK 90.80 44.21 80.26 69.45 0.570 0.782 0.402
sORF finder 21.30 91.84 49.68 53.63 0.645 0.538 0.182

is worse than CPPred with MCC 0.869 versus 0.919 for
Integrated-Testing and 0.502 versus 0.765 for Integrated-
sORF-Testing.

OCTD features

To highlight the importance of CTD features, we built
a model (OCTD-Model) by using only 30 CTD features
(OCTD). The OCTD-Model is trained by Human-Training
and then tested on Human-Testing and Human-sORF-
Testing. As compared with OCTD-Model, we obtained
NCTD-Model on Human-Training by using non-CTD fea-
tures (i.e. ORF length, ORF coverage, Fickett score, Hex-
amer Score, Gravy, pI, ORF integrity and Instability) and
then also tested on Human-Testing and Human-sORF-
Testing. The results are shown as Supplementary Table S9.
For Human-sORF-Testing, the results of OCTD-Model are
much better than NCTD-Model with the accuracy of 79%
versus 56% and MCC of 0.587 versus 0.214. But as Human-
Testing, the results of OCTD-Model are slightly worse than
NCTD-Model with the accuracy of 89% versus 93%, MCC
of 0.783 versus 0.873. The above results show that CTD
features are important in predicting the RNA coding po-
tential, especially for sORF data. Overall, introducing the
CTD features can improve the performance of CPPred on
sORF data significantly.

The ability of CPPred to estimate novel coding RNAs

To further evaluate our method, we tested its capacity of
predicting new coding RNAs and compared it with other
methods (CPAT, CPC2, PLEK and sORF finder) on human
and mouse. With time elapsing, some new coding RNAs
were annotated. We collected the mRNA transcripts as new

coding RNAs from 27 November 2017 to 3 April 3 2018.
We obtained 74 novel coding RNAs of human, 3278 novel
coding RNAs of mouse from the RefSeq database. Among
them, there are five human coding RNAs only containing
sORF (5 sORF-RNAs), 95 sORF-RNAs of mouse. More-
over, 1178 novel coding genes, which included 1335 cod-
ing transcripts, are extracted by Pertea et al. in May 2018
in bioRxiv (BioRxiv: https://doi.org/10.1101/332825). Sub-
sequently, Jungreis et al. reported that nearly all the novel
protein-coding predictions from Pertea et al. are false pos-
itives in July 2018 in bioRxiv (BioRxiv: https://doi.org/10.
1101/360602). Our method CPPred and other methods are
used to predict the coding potential of the novel coding
RNAs, which are compared according to the number of
coding RNAs predicted correctly. As can be seen from Table
8, CPPred correctly predicted 67 in 74 novel human cod-
ing RNAs and 3099 out of 3278 novel coding RNAs of
mouse. Interestingly, for the 1335 recently annotated coding
RNAs from the work of Pertea et al., only 119 transcripts
are predicted as coding RNAs by the CPPred. In fact, al-
most all novel coding RNAs are ncRNAs (91.1%), and the
conclusion is consistent with the view of Jungreis et al. On
the other hand, although the novel coding RNAs recently
predicted by Pertea et al. have many false positives, there
are still some transcripts (119 coding RNAs) that require
attention and further experimental validation (Supplemen-
tary File S1.xlsx). Moreover, 4 out of 5 novel sORF-RNAs
of human are correctly predicted and 35 among 95 novel
sORF-RNAs of mouse are also predicted successfully. The
performance of CPPred, CPAT, CPC2 and PLEK is sim-
ilar on coding RNAs. For sORF-RNAs, CPPred outper-
formed CPAT and CPC2. However, our method CPPred
did not perform as well as PLEK for the new mouse sORF-
RNAs. PLEK showed a higher false positive rate in Mouse-
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Table 6. Comparison of CPPred (Integrated-Model) and CPAT, CPC2, PLEK on Integrated-Testing

Method SP (%) SN (%) PRE (%) ACC (%) F-score AUC MCC
CPPred 94.93 96.91 95.03 95.92 0. 960 0.990 0.919
CPAT 93.86 92.66 93.75 93.26 0.932 0.980 0.865
CPC2 95.54 91.27 95.34 93.40 0.933 0.979 0.869
PLEK 90.17 66.32 87.09 78.24 0.753 0.872 0.582

Table 7. Comparison of CPPred (Integrated-Model) and CPAT, CPC2, PLEK, sORF finder on Integrated-sORF-Testing

Method SP (%) SN (%) PRE (%) ACC (%) F-score AUC MCC
CPPred 94.92 80.83 94.09 87.88 0. 870 0.955 0.765
CPAT 94.49 68.97 92.56 81.77 0.790 0.925 0.657
CPC2 96.20 47.65 92.62 71.93 0.629 0.891 0.502
PLEK 91.40 34.50 80.04 62.95 0. 482 0.737 0.315
sORF finder 55.35 67.09 60.04 61.22 0.634 0.560 0.226

Table 8. CPPred (Human-Model), CPAT, CPC2, PLEK and sORF finder are tested on the novel coding RNAs of human and mouse

Data type Organism
Number of
new data CPPred CPAT CPC2 PLEK sORF finder

All coding RNAs Human 74 67 69 67 69 N/A
Mouse 3278 3099 3155 3095 2961 N/A
Human (Pertea et al., 2018) 1335 119 177 248 105 N/A

Small coding RNAs Human 5 4 0 0 1 5
Mouse 95 35 32 8 43 95

sORF-Testing (Table 5), which may be the main reason for
a higher accuracy rate predicted by PLEK than CPPred.
Moreover, CPPred performed worse than sORF finder. The
reason may be that the sORF finder has a higher false pos-
itive rate due to base on a single feature (Tables 3, 5 and 7;
Supplementary Tables S2 and S6).

CONCLUSION

In this work, based on SVM classifier algorithm, we devel-
oped a tool CPPred to predict coding potential using multi-
ple features, which are extracted from CPAT (42) and CPC2
(39), and CTD features are added particularly. Here, we
used CTD features to predict coding potential for the first
time in eukaryotes. Moreover, we found that the features of
T2, C0 and GC (CTD features) play a key role in predicting
coding potential.

Our method CPPred is trained on Human-Training and
Integrated-Training to obtain the Human-Model and the
Integrated-Model. As the former, CPPred is tested on the
dataset of human, mouse, zebrafish, S. cerevisiae and fruit
fly, obtaining AUC from 0.72 to 0.99. Besides, our CP-
Pred is compared with other methods CPAT, CPC2, PLEK
and sORF finder. The CPPred outperforms CPAT, CPC2,
PLEK and sORF finder on the testing sets of mouse, ze-
brafish and S. cerevisiae. However, CPPred does not per-
form as well as PLEK on human testing sets, which may
be due to the high level of redundancy between the testing
set of human and PLEK’s training set (84) (Tables 4 and 5).
We analyzed the testing set of human and PLEK’s train-
ing set, and found 46.1% coding RNAs and 65.7% ncR-
NAs redundant sequences between the human testing set of
CPPred and human training set of PLEK, respectively. For
fruit fly, CPPred performs worse than CPAT, which may be
due to the fact that CPAT is trained on fruit fly while CP-
Pred is trained on human dataset. Thus, the second model
is built by Integrated-Training. From Tables 6 and 7, we
compared CPPred with other tools (CPAT, CPC2, PLEK
and sORF finder) and found some improvement in MCCs

by >5% and >11% on Integrated-Testing and Integrates-
sORF-Testing, respectively. Moreover, the CTD features
are particularly important for predicting the coding poten-
tial of sORF datasets (Supplementary Table S9). Overall,
the results demonstrate that CPPred performs well on long
RNA datasets and much better than other tools on sORF
datasets.
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