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Abstract

Motivation: The main function of protein–RNA interaction is to regulate the expression of genes.

Therefore, studying protein–RNA interactions is of great significance. The information of

three-dimensional (3D) structures reveals that atomic interactions are particularly important.

The calculation method for modeling a 3D structure of a complex mainly includes two strategies:

free docking and template-based docking. These two methods are complementary in protein–

protein docking. Therefore, integrating these two methods may improve the prediction accuracy.

Results: In this article, we compare the difference between the free docking and the template-

based algorithm. Then we show the complementarity of these two methods. Based on the analysis

of the calculation results, the transition point is confirmed and used to integrate two docking algo-

rithms to develop P3DOCK. P3DOCK holds the advantages of both algorithms. The results of the

three docking benchmarks show that P3DOCK is better than those two non-hybrid docking algo-

rithms. The success rate of P3DOCK is also higher (3–20%) than state-of-the-art hybrid and non-

hybrid methods. Finally, the hierarchical clustering algorithm is utilized to cluster the P3DOCK’s

decoys. The clustering algorithm improves the success rate of P3DOCK. For ease of use, we pro-

vide a P3DOCK webserver, which can be accessed at www.rnabinding.com/P3DOCK/P3DOCK.html.

An integrated protein–RNA docking benchmark can be downloaded from http://rnabinding.com/

P3DOCK/benchmark.html.

Availability and implementation: www.rnabinding.com/P3DOCK/P3DOCK.html.

Contact: liushiyong@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-binding proteins (RBPs) bind specifically to their target RNAs in

the cell. RBP–RNA interactions play an important role in post-

transcriptional gene regulation to fine-tune gene expression (Gerstberger

et al., 2014). Therefore, studying RBP–RNA interactions can help us to

understand the expression of genes. A variety of experimental techniques

have been developed to study RBP–RNA interactions (Konig et al., 2010;

Lapointe et al., 2015; Ramanathan et al., 2018; Tome et al., 2014;

Van Nostrand et al., 2016; Zarnegar et al., 2016; Zhao et al., 2010).

Though lots of RBP–RNA interactions have been determined, atomic

interaction details of them remain missing, which are the key to under-

stand the molecular mechanisms underlying the protein–RNA recogni-

tion. The number of protein–RNA complex structure in PDB is far less

than the number of protein–RNA interactions identified by RBP–RNA

interactome capture techniques. To complement experimental methods

and fill the gap between them, computational approaches of modeling

protein–RNA complex structures are urgently needed for elucidating

atomic details of RBP–RNA interactome.
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The main strategy of computational modeling of protein–RNA

complex structure is protein–RNA docking (Arnautova et al., 2018;

Guilhot-Gaudeffroy et al., 2014; Huang et al., 2013; Iwakiri et al.,

2016; Perez-Cano et al., 2010; Setny and Zacharias, 2011;

Tuszynska et al., 2015; Yan et al., 2017). To date, several protein–

RNA docking methods (Arnautova et al., 2018; Guilhot-Gaudeffroy

et al., 2014; Huang et al., 2013; Iwakiri et al., 2016; Perez-Cano

et al., 2010; Setny and Zacharias, 2011; Tuszynska et al., 2015;

Yan et al., 2017) have been developed for the prediction of the com-

plex structures. Most of these methods are borrowed from existing

protein–protein docking methods, such as GRAMM (Katchalski-

Katzir et al., 1992), FTDOCK (Jackson et al., 1998), ATTRACT

(Zacharias, 2003), ICM (Totrov and Abagyan, 1997), ZDOCK

(Mintseris et al., 2007) and RosettaDock (Gray et al., 2003).

Previous analysis shows that the features of protein–protein inter-

face differ significantly with the features of protein–RNA interface

on atomic packing density, positively charged residue propensity,

p–p stacking interactions and secondary structure states. Therefore

in 2013, we proposed a novel protein–RNA docking approach

3dRPC specially designed for these protein–RNA interface features.

The protocol 3dRPC includes a docking approach RPDOCK and a

coarse-grained knowledge-based scoring function DECK-RP for

reranking decoys. The success rates of RPDOCK are considerably

higher (about 20%) than that of FTDock and GRAMM on two

docking benchmarks (Huang et al., 2013). In 2014, Huang et al.

(Huang and Zou, 2014) developed a knowledge-based scoring func-

tion ITScore-PR, and reported a success rate of 46.5%, compared

with 45.5% for DECK-RP (Huang et al., 2013), 36.4% for DARS-

RNP (Tuszynska and Bujnicki, 2011) and 27.3% for the Li potential

(Li et al., 2012) on a docking benchmark from Perez-Cano et al.

(2012) if the top 10 predictions were considered. Recently,

Yan et al. published a protein–RNA docking webserver HDOCK

(Yan et al., 2017) based on ITScore-PR. The success rate increased

when it compared with Hdocklite (Huang and Zou, 2010) because

HDOCK integrates a template-based docking method but Hdocklite

is a method based only on free docking. HDOCK identified a hom-

ologous protein–RNA complex structure by HHsearch (Soding

et al., 2005) (for protein) and FASTA (Pearson, 1990) (for RNA)

against the PDB sequence database. Then the MODELLER (Webb

and Sali, 2016) was used to construct the protein model of the input

sequence by using a template from a homologous protein–RNA

complex. HDOCK allows for the construction of complex structures

for proteins without 3D structures, which can expand the applica-

tion of docking. But the ability to detect templates using HHsearch

or FASTA is worse than that based on 3D structural alignment

method when 3D structures are available since the 3D structure is

more conserved than the sequence (Illergard et al., 2009).

Besides free docking, template-based modeling approaches

(Zheng et al., 2016), RNP-denovo (Kappel and Das, 2019) and MD

simulations (Bahadur et al., 2009; Kim et al., 2014; Zheng et al.,

2016) with experimental constrain are also proposed to predict pro-

tein–RNA complex structure. The RNP-denovo can de novo model

the large conformational changes of RNA components with the help

of experimental information, herein are limited to several cases.

Nithin et al. reviewed the current available bioinformatics tools for

protein–RNA docking, which may help users to choose appropriate

tools to get the 3D structures of protein–RNA complexes (Nithin

et al., 2018). On the other hand, template-based modeling

approaches are primarily based on an assumption that similar pro-

tein sequence may fold into similar 3D structure, which is derived

from the study of the sequence–structure relationship on proteins.

This assumption has been extended to protein–protein complex,

which states that similar protein structure may bind in a similar

way. This assumption can also be extended to protein–RNA com-

plex reported by our team (Zheng et al., 2016). A transition point

(Illergard et al., 2009) does exist in protein–RNA interaction system

similar to proteins (Chothia and Lesk, 1986) and protein–protein

interaction system (Aloy et al., 2003; Kundrotas et al., 2012). Based

on this principle, we developed a template-based protein–RNA com-

plex structure prediction method PRIME (Zheng et al., 2016) with

an accuracy of about 40% for top 1, which is much higher than the

accuracy of our previously developed protein–RNA docking algo-

rithm 3dRPC (Huang et al., 2013). PRIME can predict some exam-

ples that free docking currently fails. However, the scoring function

of RNA alignment algorithm SARA in PRIME is size dependent,

which limits its ability to detect good templates in some cases.

To enhance the RNA alignment accuracy, we developed a novel

RNA 3D structural alignment approach RMalign with a size inde-

pendent scoring function RMscore (Zheng et al., 2019). The most

recent version, PRIME2.0 (Jinfang et al., 2018; Zheng et al., 2019),

improves the success rate about 10% than PRIME for top 1. If there

is no template structure, the free docking method will be a useful

complementary. The combination of these two approaches may im-

prove the prediction accuracy of RNA–protein complexes, which

has been demonstrated in protein–protein complex prediction prob-

lems (Vreven et al., 2014).

Despite these advances, predicting RNA–protein complex struc-

ture remains challenging when two unbound structures are given.

There is still no study integrating the template-based and free dock-

ing method in protein–RNA docking field. A real combination of

free docking and template-based algorithm is needed to be devel-

oped. Here, we introduce a novel combined docking protocol

P3DOCK, which is a docking webserver based on a template-based

approach PRIME (version 2.1) and a template-free docking algo-

rithm 3dRPC, to predict protein–RNA complex structure from un-

bound protein and RNA structure.

In this article, first, we reveal the transition point from dissimilar

and similar binding model as in the previous study (Zheng et al.,

2016). Then, we update PRIME 2.0 to version 2.1 so that it can

build multi-chains complex structures. Next, we put forward a hy-

brid docking method, P3DOCK, which combines PRIME2.1 and

3dRPC. P3DOCK holds the advantages of template-based docking

and free docking. The success rate of top 10 of P3DOCK in the three

docking benchmarks is higher than 3dRPC and PRIME 2.1, respect-

ively. In addition, we also compare the performance of P3DOCK

with state-of-the-art methods. The results demonstrate that the top

10 success rate of P3DOCK is much higher than other methods.

We also show that the clustering algorithm can improve the success

rate of P3DOCK. Finally, we provide a P3DOCK webserver for the

interested researchers to use conveniently.

2 Materials and methods

2.1 Dataset
The co-crystal structures of protein–RNA complexes were down-

loaded from PDB (Berman et al., 2000) (2018-04 released). To con-

sider the functional interaction interface of protein–RNA, we used

the biological assemblies in PDB. Structures with resolution greater

than 3.0 angstroms (Å) were kept. The minimum length of the pro-

tein and RNA monomers were set to 30 and 20, respectively. These

conditions are consistent with PRIME (Zheng et al., 2016). RNA re-

dundancy is removed by the CD-hits package (Fu et al., 2012) with

sequence identity 0.99 and the coverage 0.99. The parameters to
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remove redundancy are also consistent with PRIME. From the view

of parameters, we just removed the identical RNA and the RNA

with little difference (such as a single-point mutation on RNA).

After these steps, we obtained 332 protein–RNA complex structures

named as PDB332 (Supplementary Table S1). Since 3dRPC (Huang

et al., 2013) does not consider the missing/modified amino acids and

nucleotides, P3DOCK also ignores them. We will determine the

value of the transition point for selecting templates on this dataset.

Since we only remove the redundancy with RNA sequence identity

99% and 0.99 coverage. This may create bias in determination of

the transition point and testing the method. So, we remove the pairs

which have an RNA sequence identity >¼ 60% in the determination

of the transition point using needle (Rice et al., 2000). The relation-

ship between sequence and structure conservation weakens for

alignments below this sequence identity (Capriotti and Marti-

Renom, 2010). This dataset will be used as a template library

for P3DOCK and PRIME 2.1. For benchmarking, we use three

published docking benchmarks including different targets

(Supplementary Fig. S1) to test our methods. To make the testing

result reliable, we exclude the models built on templates with high

sequence identity (60%). The relationship between the success rates

of P3DOCK and the RNA sequence identity thresholds used to re-

move redundancy is further investigated.

2.2 Global similarity of protein–RNA complex and

iRMSD
In previous researches, TM-score/RMscore refers to the similarity of

monomer for that they are fitted on the monomer dataset (Jinfang

et al., 2018; Zhang and Skolnick, 2005). However, the assembly of

protein–RNA complex usually contains multi-chains in protein and

RNA, such as protein–RNA complex 1a34 (PDB ID) contains one

protein chain A and two RNA chains CB. Hence, how to describe

the similarity of the protein–RNA complex between 1asy (A: R) and

1a34 (A: CB) is a problem. The RNA similarity of 1asy and 1a34

can be described with the one of the RMscore between R-C (1asy

chain R and 1a34 chain C), R-B or R-CB. RMscore of R-C and R-B

represents the local similarity of RNA and R-CB describes the global

similarity of RNA. In this study, the RMscore between 1asy chain R

and 1a34 chain CB (because the order of chain C is before chain B

in the 3D structure file of PDB) is used to represent the similarity of

RNA in protein–RNA complex. In fact, multi-chain RNAs are con-

sidered as a single chain. Similarly, protein can be discussed in this

way too, if complex contains more than two protein chains. TR-

score, which is defined as the minimum of TM-score and RMscore,

is used to describe the global similarity of protein–RNA complex

following previous studies (Kundrotas et al., 2012; Zheng et al.,

2016).

Interaction root-mean-square deviation (iRMSD) (Aloy et al.,

2003) was first introduced by Aloy et al. to measure the geometric

difference between domain orientation in protein–protein inter-

action. Then we used iRMSD to measure the binding mode in pro-

tein–RNA binary complex (Zheng et al., 2016). Given two binary

complex P1-R1 and P2-R2, we will get 14 coordinates after super-

imposing P1 to P2. These 14 coordinates include the mass center of

P1 and P2, and other 12 points defined as the mass center is added

or subtracted 5 Å to each of the x, y and z coordinates. For example,

we assume that the coordinate of mass center of P1 is (x, y, z).

So, for another six points of P1, their coordinates are (x 6 5, y, z),

(x, y 6 5, z), (x, y, z 6 5). We also get other 14 coordinates after

superimposing R1 to R2. Then, iRMSD is defined as the RMSD

between 14 coordinates of P1-R1 and P2-R2. In this study, all the

protein/RNA chains within one complex are regarded as one chain

P/R. The protein is superimposed by TM-align (Zhang and

Skolnick, 2005), and RNA is superimposed by RMalign (Zheng

et al., 2019).

2.3 Process of P3DOCK
We update PRIME 2.0 to version 2.1, enabling PRIME to build the

multi-chain complex. We also expand the template library. Then we

integrate RPIME 2.1 and 3dRPC into P3DOCK. In Figure 1,

it shows the flowchart of P3DOCK. The monomeric structures of

the protein and RNA are docked by two methods: PRIME 2.1 and

3dRPC. The decoys generated by PRIME 2.1 are ranked by TR-

score (minimum of RMscore and TM-score) or TM-score. The

decoys generated by 3dRPC are reranked by DECK-RP (Huang

et al., 2013). In order to combine these two different types of

decoys, we use the value of the transition point. These decoys con-

structing from templates are ranked at the top of P3DOCK’s predic-

tion, of whom TR-score is greater than the transition point. The top

1000 decoys generated by 3dRPC are ranked behind those generated

by the template-based method.

2.4 Clustering of P3DOCK decoys
Clustering algorithm can gather similar decoys to one cluster, so

that it can improve the success rate of top N by keeping a represen-

tative decoy within one cluster. In this article, we use clustering algo-

rithm to improve the success rate of docking. For each target,

P3DOCK generates 1000 decoys. The similarity matrix of each tar-

get is generated with ligand RMSD of all-to-all comparison of 1000

decoys. The average linkage hierarchical clustering algorithm is used

to cluster all decoys, which minimizes the average ligand RMSD be-

tween all observations of paired clusters. For each cluster, the top-

ranking decoy is chosen as the representative decoy.

2.5 Model evaluation
The quality of the model is measured by ligand RMSD, which is

consistent with previous studies (Yan et al., 2017; Zhao et al., 2010;

Zheng et al., 2016). Models with ligand RMSD less than 10 Å are

defined as ‘acceptable’ (Huang and Zou, 2014). The docking success

rate of top N is defined as the number of targets on the top N models

containing at least one acceptable model and then divided by the

number of all targets. The success rate is used to compare the per-

formance of different docking algorithms.

Fig. 1. Flowchart of P3DOCK. Protein and RNA structures were docked by

PRIME 2.1 and 3dRPC. The models generated by PRIME 2.1 are ranked by

similarity scores. The model built on the template whose value is greater

than the transition point is remained. The models generated by 3dRPC are

sorted by DECK-RP. The P3DOCK’s models are generated from PRIME 2.1

and 3dRPC. The models of 3dRPC are ranked behind PRIME’s

P3DOCK 3
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3 Results

3.1 Determination of the transition point
Previous studies about protein–RNA and protein–protein docking

revealed the relationship between binding patterns and monomer

similarity (Kundrotas et al., 2012; Zheng et al., 2016). The binding

modes above the transition point are similar, while the binding pat-

terns below the transition point are random. This feature of the tran-

sition point can be used to select templates. The corrected models

built by the template-based method are almost above the transition

point (Zheng et al., 2016). However, the transition point, which is

determined based on binary complexes in the previous study (Zheng

et al., 2016), is not applicable any more in multi-chain complexes

(this study). So, we need to redetermine the value of the transition

point. We perform all-to-all alignment of 332 protein–RNA struc-

tures. The protein structure is aligned by TM-align (Zhang and

Skolnick, 2005) and the RNA structure is aligned by RMalign

(Zheng et al., 2019). Similarity is characterized by TM-score (Zhang

and Skolnick, 2004) or TR-score.

In Figure 2, it shows the results of all-to-all alignment of 332

complexes. When TM-score is used to represent the monomer

similarity, the transition point occurs at around 0.35. However,

the result of previous study shows that the transition point is around

0.5 (Zheng et al., 2016). This difference may be explained by the dif-

ferent composition of the complex. A complete complex contains a

larger or same size protein/RNA structure than a binary complex.

This makes the value of TM-score smaller (the definition of

TM-score). To illustrate whether RNA can eliminate the alternative

binding mode in protein–RNA interactions, we use TR-score to rep-

resent the similarity of complex. As shown in Figure 2B, the ratio of

noise (iRMSD > 5 Å, 1—accumulative fraction) is relatively lower

than that in Figure 2A. This suggests that RNA similarity can reduce

multiple binding patterns of high similarity proteins, which indicates

that protein and RNA similarity are both required in the selection of

templates. Overall, in the multi-chain complexes, there is also a

transition point between the binding mode and the structural simi-

larity. The similarity between structures which is greater than transi-

tion point indicates that they have similar binding mode.

3.2 The comparison of PRIME 2.1 and free docking
PRIME 2.0 is an algorithm for constructing protein–RNA binary

complexes, which cannot be used to build complexes with multi-

chains (greater than 2). So, we update PRIME 2.0 to version 2.1 and

template library so that it can build the structures with multi-chains.

The performance of PRIME 2.1 and the free docking algorithm is

then compared on RNAbenchmark (Huang and Zou, 2013), pro-

tein–RNA docking benchmark v1.1 (Perez-Cano et al., 2012) and

PRDB v2 (Nithin et al., 2017). The models built by PRIME 2.1 are

sorted by TR-score or TM-score, while the models constructed by

3dRPC are sorted by DECK-RP (Huang et al., 2013).

In Figure 3, it shows the docking results of PRIME 2.1 and

3dRPC. For top 10 predictions on three docking benchmarks, the

success rates of template-based docking are all higher than that of

the free docking algorithm. With more predictions, the success rates

of the free docking algorithm are higher than PRIME 2.1. The

curves of success rate of PRIME 2.1 are different when the models

sorted by TM-score or TR-score. In RNAbenchmark (Huang and

Zou, 2013) and protein–RNA docking benchmark v1.1 (Perez-Cano

et al., 2012), TM-score has a higher success rate than that of

TR-score. In PRDB v2 (Nithin et al., 2017), the success rate of

TR-score is higher than the success rate of TM-score before top 7

predictions, and then the success rate of TM-score is higher than

that of TR-score (a difference of 0.02 in top 10 predictions). In the

previous section, we conclude that the TR-score, which takes the

similarity of both protein and RNA into account, is better than con-

sidering protein alone. However, the success rate of PRIME 2.1

sorted by TM-score is higher than (0.02) that sorted by TR-score in

benchmarking. This may be due to the differences in datasets used in

benchmarking and determination of transition point. So, both

TM-score and TR-score are used to sort the models built by PRIME

2.1. Table 1 shows the number of targets which are correctly pre-

dicted by 3dRPC and PRIME 2.1 in top 10. PRIME 2.1 (TM-score)

correctly predicts 33/36/40 targets while 3dRPC correctly predicts

31/20/30 targets in PRDB v2/protein–RNA docking v1.1/

RNAbenchmark. However, the overlapping number is only 6/5/21.

This shows that the free docking algorithm and the template-based

docking algorithm are complementary. Supplementary Table S2

shows the success rates of top 10 of PRIME 2.1 and 3dRPC, which

indicates the different performance between template-based and

template-free methods. This conclusion is consistent with protein–

protein complex docking (Vreven et al., 2014). In Supplementary

Figure S2, it shows the distribution of interface RMSD between

bound and unbound structures of targets that are correctly modeled

by docking methods, which indicates that template-based method

Fig. 2. The binding mode versus similarity score. The iRMSD is plotted

against TM-score (A) and TR-score (B) in all-to-all alignment of 322 protein–

RNA complexes. The inset shows that the value of the transition point is 0.35.

For the inset, the similarity score is divided into 20 bins with the width of 0.05.

Within each bin, we calculate the accumulative fraction of iRMSD <¼ 5 Å. The

accumulative fraction of iRMSD <¼ 5 Å is defined that the number of pairs

with the iRMSD <¼ 5 Å is divided by all the pairs within one bin. The transi-

tion point is defined that the similarity score threshold with which the accu-

mulative fraction of the iRMSD <¼ 5 Å begins changing from 0 to non-zero

value. The value of ratio of noise is equal to 1-accumulative fraction
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performs better in medium (1.5 Å < interface RMSD <¼ 4 Å) and

difficult targets (interface RMSD > 4 Å), and free docking method

is better in easy targets (0 Å <¼ interface RMSD <¼ 1.5 Å). The

P-value of Fisher test between the PRIME 2.1 and 3dRPC for easy

targets is 0.01.

3.3 Benchmarking of P3DOCK
In the previous section, we compared the performance of PRIME

2.1 and 3dRPC. The performance of PRIME 2.1 is higher than that

of 3dRPC for top 10 predictions. However, they have different char-

acteristics. The targets which are successfully predicted by PRIME

2.1 and 3dRPC are not all overlapping. So, we develop P3DOCK to

combine these two algorithms. The P3DOCK is tested on three

docking benchmarks. We also compare the performance of

P3DOCK with other state-of-the-art methods.

As shown in Figure 4, the top 10 success rates of P3DOCK are

almost 10% higher than that of PRIME 2.1 in protein–RNA dock-

ing v1.1 and PRDB v2. In RNAbenchmark, the success rate of

P3DOCK is reduced slightly. This is because P3DOCK only kept

models built by templates with similarity greater than the transition

point. But the fact is that the template with similarity score less than

the transition point may be employed to build the correct model.

Such as the target 3lrr, it can be successfully built on template 4bpb.

But the TR-score between them is 0.31, which is less than the transi-

tion point. The near native decoy is excluded in this situation. So, if

the value of the transition point (0.35) is used to combine PRIME

2.1 and 3dRPC, the success rate will be decreased. Regardless, the

overall performance of P3DOCK is better than PRIME 2.1 or

3dRPC alone for top 10 predictions. This conclusion is consistent

with previous protein–protein docking (Vreven et al., 2014). The

details on docking benchmark are listed in Supplementary Table S3.

Since three published docking benchmarks can be accessed, which

make it difficult to evaluate different algorithms. Therefore, we

integrate these three docking benchmarks into one docking bench-

mark (Supplementary Table S4). The success rates of P3DOCK for

top 10 predictions are higher than 3dRPC and PRIME2.1 by 19%

and 8% in one docking benchmark (an integrated protein–RNA

docking benchmark with 207 cases), respectively (see

Supplementary Table S6). HDOCK can only be used to model

single-chain proteins, so it cannot be compared here. The com-

pressed file can be downloaded from http://rnabinding.com/

P3DOCK/benchmark.html. In Supplementary Figure S3, it shows

the distribution of interface RMSD of targets which are correctly

predicted by P3DOCK on the three docking benchmarks. We also

show the success rates of P3DOCK with different template–target

RNA sequence identity (Supplementary Fig. S4).

We also compare the performance of P3DOCK and HDOCK on

the HDOCK dataset with the same condition, in which the protein

high sequence identity (>¼ 0.3) is removed. The HDOCK dataset

only includes 33/33/25 testing cases of 126/104/72 targets from

PRDBv2, protein–RNA docking benchmark v1.1 and

RNAbenchmark, respectively. The success rate of P3DOCK for top

1 prediction is 6% lower than HDOCK in 33 testing cases from pro-

tein–RNA docking benchmark v 1.1. However, the success rates of

P3DOCK for top 1 prediction are higher than HDOCK by 15% and

20% in 33 cases from PRDBv2.0 and 25 cases from

RNAbenchmark, respectively (see Table 2). The results shown in

Table 2 also indicate that P3DOCK performs 15% (Fisher test:

P-value ¼ 0.20), 3% (Fisher test: P-value ¼ 1.0) and 20% (Fisher

test: P-value ¼ 0.2) better than HDOCK in terms of success rate of

top 10 predictions in partial cases from PRDBv2, protein–RNA

docking benchmark v1.1 and RNAbenchmark, respectively. At the

same time, we also listed the results of removing the homology

structures based on RNA side or on both protein and RNA sides in

Fig. 3. Success rate of PRIME 2.1 and 3dRPC in PRDB v2 (A), protein–RNA

docking benchmark v1.1 (B) and RNAbenchmark (C). The figure shows that

PRIME 2.1 performs better than 3dRPC for top 10 predictions

Table 1. The number of targets which are correctly predicted by PRIME 2.1 and 3dRPC in the top 10 predictions

PRDB v2 Protein–RNA docking v1.1 RNA benchmark

Both 3dRPC PRIME 2.1 (TM-score) Both 3dRPC PRIME 2.1 (TM-score) Both 3dRPC PRIME 2.1 (TM-score)

6 31 33 5 20 36 21 30 40

Fig. 4. The results of P3DOCK and non-hybrid docking method. The success

rates of P3DOCK in PRDB v2 (A), protein–RNA docking benchmark v1.1 (B)

and RNAbenchmark (C). This figure shows that P3DOCK has a higher success

rate than free docking or template-based docking algorithm for top 10

predictions
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Table 3. For real practical applications, we can use all templates ex-

cept for the target itself. So, the result by using sequence identity

cut-off 0.99 for both protein and RNA are also reported in Table 3.

Table 4 shows a more comprehensive comparison with other dock-

ing methods in RNAbenchmark. P3DOCK/PRIME obtains the high-

est success rate 0.58/0.56 for top 10 predictions, which is 0.06/0.11

higher than ZDOCK-ITscore-PR/RPDock-ITscore-PR. For top 1

prediction, PRIME 2.0 and P3DOCK still achieve the best success

rate with the advantage of template-based method. In addition, we

compare the performance of P3DOCK and PRIME 2.0 on the un-

bound set in order to test the performance of building binary com-

plexes. The result indicates that P3DOCK outperforms PRIME 2.0

(Supplementary Fig. S5). At last, we also compare the performance

of P3DOCK with RNP-denovo on 10 cases provided by this method

(Kappel and Das, 2019). The result is presented in Table 5. The re-

sult shows that P3DOCK can build more accurate models in some

cases, but RNP-denovo can build some models successfully while

P3DOCK fails.

3.4 Comparison of before and after clustering
In the previous section, we benchmark the performance of P3DOCK

and compare it to the other 11 methods. P3DOCK achieves the high-

est success rate of top 1 and top 10 predictions in RNAbenchmark.

However, some near-native decoys generated by 3dRPC or PRIME

2.1 cannot be picked out (Fig. 4). The clustering algorithm can rank

the near-native decoys to top in protein–protein docking (Kozakov

et al., 2005). Therefore, in this section, we cluster the decoys gener-

ated by P3DOCK (both PRIME’s and 3dRPC’s) to further improve

the success rate of top 10 of P3DOCK.

Different ligand RMSD cut-offs are used to cluster decoys. But dif-

ferent cut-offs have little effect on the final success rates

(Supplementary Fig. S5). Therefore, 5 Å is selected as the cut-off finally.

The results of the clustering are shown in Figure 5 and Supplementary

Table S5. In Figure 5, it shows that the success rates after clustering is

higher than that without clustering in three protein–RNA docking

benchmarks. After clustering, the success rates of top 10 are increased

by 4%, 3% and 3%, respectively (Supplementary Table S5). An

example shows that the near-native decoy of target 3ol9

Table 2. Comparison between P3DOCK and HDOCK in partial targets of three docking benchmarks

PRDB v2a Protein–RNA docking benchmark v 1.1a RNAbenchmarka

Top 1 Top 10 Top 1 Top 10 Top 1 Top 10

P3DOCK 0.48 0.70 0.27 0.58 0.72 0.84

HDOCK 0.33 0.52 0.33 0.55 0.52 0.64

aSuccess rate of top 1 and top 10 of HDOCK testing in 33/33/25 of 126/104/72 targets, which is derived from HDOCK (Yan et al., 2017). For P3DOCK, we

remove the model if the protein sequence identity between the template and the target is greater than 0.3. Bold values indicate top values.

Table 3. Performance of P3DOCK in partial targets on three docking benchmarks with different conditions

PRDB v2a Protein–RNA docking benchmark v 1.1a RNAbenchmarka Conditions (sequence identity cutoff)

Top 1 Top 10 Top 1 Top 10 Top 1 Top 10 Protein RNA

P3DOCK 0.39 0.64 0.24 0.52 0.68 0.84 0.30 0.60

P3DOCK 0.52 0.70 0.27 0.55 0.72 0.84 0.99 0.60

P3DOCK 0.48 0.70 0.27 0.58 0.72 0.84 0.30 0.99

P3DOCK 0.58 0.76 0.36 0.64 0.76 0.84 0.99 0.99

aSuccess rate of P3DOCK on the HDOCK dataset including 33/33/25 targets, which is derived from HDOCK (Yan et al., 2017). Conditions represent remov-

ing homology structure based on protein sequence identity only, RNA sequence identity only or both protein and RNA sequence identity. The sequence identity

cut-offs of protein and RNA are 0.30, 0.60 and 0.99, respectively.

Table 4. Performance of docking methods on RNAbenchmark (all

targets)

Docking protocol Top 10 Top 1

NPDocka 0.29 (top 3)

P3DOCK 0.58 0.40

PRIME2.1 0.56 0.41

RPDock-DECK-RPb 0.38 0.28

RPDock-3dRPC-scoreb 0.42 0.32

RPDock-ITscore-PRb 0.45 0.32

ZDOCK-ITscore-PRb 0.52 0.36

ZDOCK-3dRPC-scoreb 0.44 0.30

ZDOCK-DECK-RPb 0.40 0.25

ICMc 0.48 –

Note: – stands for not implemented. Bold values indicate top values.
aData are derived from Tuszynska et al. (2015) which only provides success

rate of top 3.
bData are extracted from Li et al. (2017) and the success rate is calculated

on partial targets. So, we recalculate it with all targets.
cData are derived from Arnautova et al. (2018).

Table 5. The comparison of P3DOCK and RNP-denovo in 10 cases

PDB ID Best RMSD of top 100 scoring models (Å),

RMSD of best scoring model (Å)

RNP-denovoa P3DOCK

1B7F 4.2 8.9 7.3 12.3

1JBS 3 3.2 1.2 1.2

1WPU 3.9 10.1 0.2 0.2

1WSU 2.4 2.8 1.6 6.3

2ASB 3.1 4 1.8 1.8

2BH2 5.8 6.8 1.8 49.4

2QUX 4.7 5.5 3.5 23.1

3BX2 3.8 4.3 5.3 19

1P6V 6.3 8.9 25.4 36

1DFU 5.5 9.1 28.6 56.2

aData are derived from RNP-denovo (Kappel and Das, 2019).
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(RNAbenchmark) is reranked to top 9 after clustering, while it is

ranked at top 17 before clustering. Overall, the clustering algorithm

improves the success rate of P3DOCK.

3.5 Webserver of P3DOCK
For the convenience of other researchers, we provide P3DOCK web-

server. As shown in Figure 6, it is divided into two parts:

1. Input and parameters configuration

‹: Upload the PDB file of the protein or provide the PDB ID. At

the same time, the chain ID must be specified.

›: Upload the PDB file of the RNA or provide the PDB ID. The

chain ID of RNA must be assigned.

fi: The parameters of P3DOCK can be set in detail. Of course,

users can also use the default parameters.

2. Results section

fl: Parameters that user set.

�: Ten best models of P3DOCK showed by JSmol (Hanson and

Lu, 2017).

–: Summary tables with top 10 models. If the model is built by

PRIME 2.1, the PDB ID of the template and the similarity scores

of the target and template are displayed. If the model is built by

3dRPC, the table will give the result of DECK-RP.

4 Discussion and conclusion

We updated PRIME 2.0 to version 2.1 and it can build a complete

protein–RNA structure instead of a binary complex. The perform-

ance of PRIME 2.1 and 3dRPC was compared on three docking

benchmarks. The results show that the template-based approach is

better than the docking-based approach. Like protein–protein dock-

ing, free docking and template-based docking have their own advan-

tages in protein–RNA docking. In other words, they are

complementary. Therefore, we developed P3DOCK by combining

free docking and template-based algorithm. We systematically

benchmarked P3DOCK on three docking benchmarks and found

that the success rates of P3DOCK are higher than that of free dock-

ing or template-based algorithms for top 10 predictions alone.

P3DOCK obtains the highest success rate in comparing to other

state-of-the-art methods for top 10 predictions. We also discuss the

ability of clustering algorithms to pick up the near-native decoys of

P3DOCK. The success rate can be improved by introducing the clus-

tering process to the P3DOCK. Finally, we provide the P3DOCK

webserver, which is convenient for researchers who need it.
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